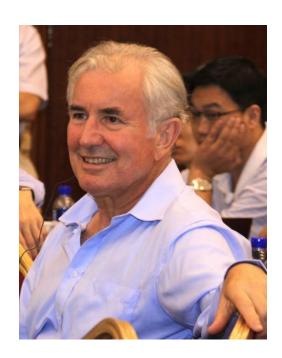


LinkTAD webinar

Welcome! We will begin at 14.30 (Beijng time)

Before the webinar begins, you can check that your sound is working by selecting 'Meeting' and 'Audio Setup Wizard' and following the on-screen instructions. You don't need to set up a microphone.

If you have any problems, please use the chat box to ask for our help. You can also say hello to your fellow participants using this box.



Agenda

- Introduction
- How to use the webinar screen
- Technical presentation:
 - Disease Outbreak Investigation (DOI)more than "take a sample and run"!
- Questions throughout- for you and us!
- We will be recording the webinar

Introductions

John Edwards

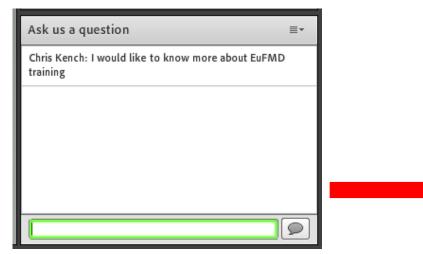
Jenny Maud

Chris Bartels

Introduction to the webinar series

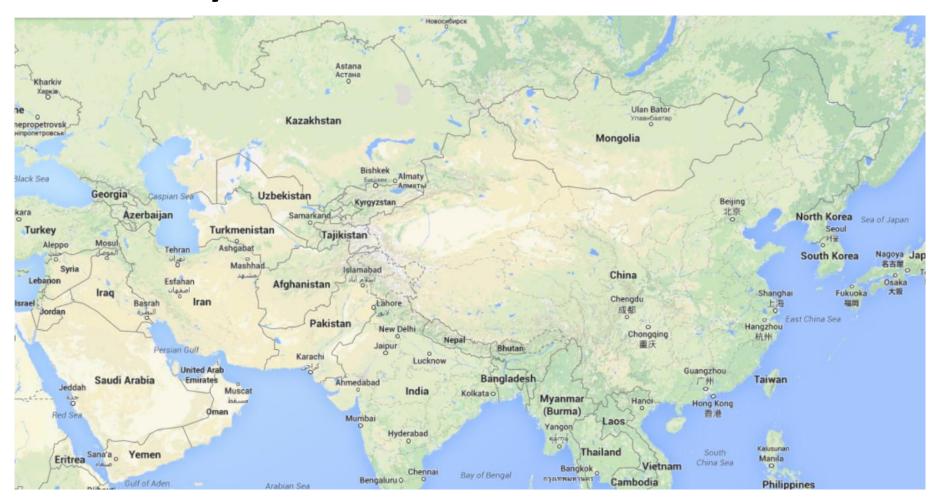
Support to GF-TADS under LinkTADs — LinkTADs aims to bring together world-class research institutes and experts in cross-border cooperation with the aim to coordinate research between the EU and China, thus improving scientific excellence in animal health (epidemiology and laboratory).

Main objectives:


- identify the priority areas, where joint actions are needed;
- link research activities carried out on by European and Chinese programmes;
- ensure a wide-range networking of scientific communities and stakeholders;
- provide a **long term vision** and coordinate future common research;
- contribute to the EU international policies;
- support young researchers through exchange programmes and training;
- share the results and methodologies within and outside the consortium;

Introduction to the webinar

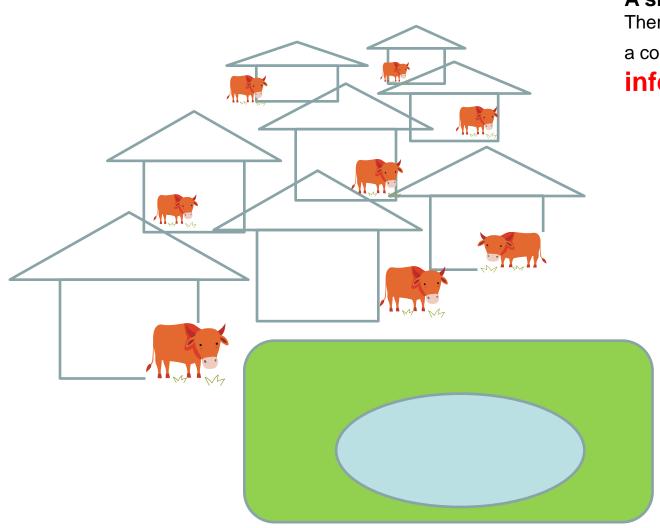
How is the weather today?



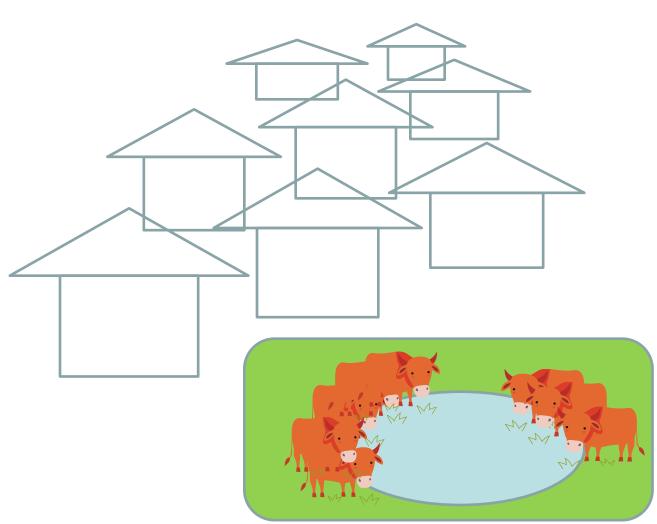
Where are you?

Disease Outbreak Investigation (DOI): more than "take a sample and run"!

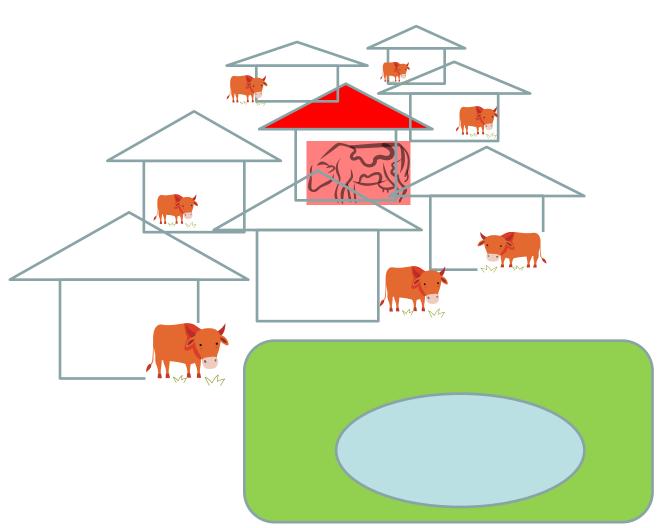
Chris Bartels


At the end of this webinar ...

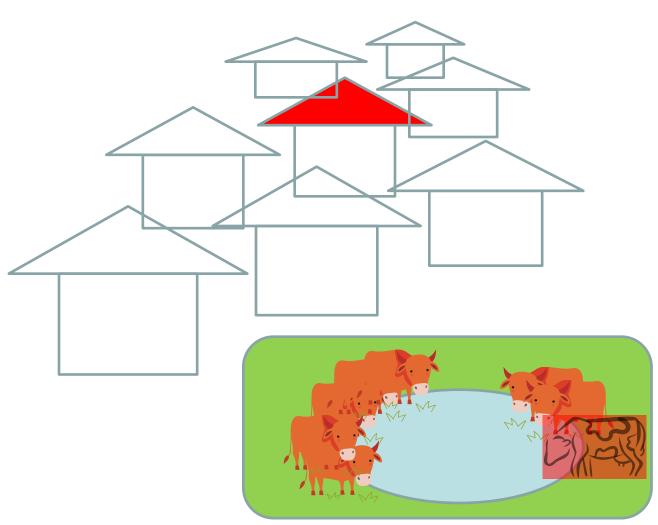
you are motivated to reflect on improving outbreak investigation protocols in support to decision making on FMD control, along the steps of the PCP-FMD framework



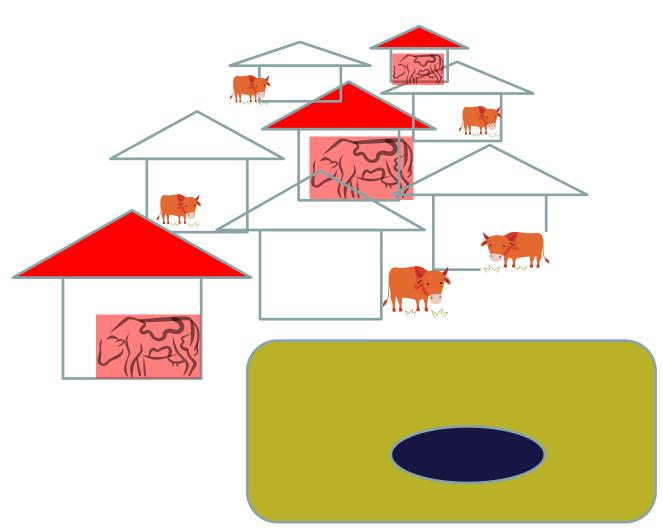
A simple story about FMD
There is a village in rural area in
a country endemically
infected with FMD,



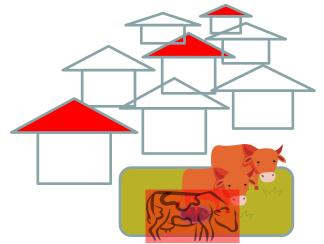
There is a village in rural area, where for some reason FMD virus is introduced. Clinical signs are not yet apparent and animals happily graze and drink together, until ...

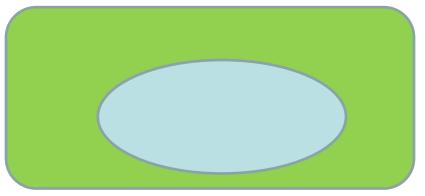


There is a village in rural area, where for some reason FMD virus is introduced. Clinical signs are not yet apparent and animals happily graze and drink together, until that day that a cow falls sick.

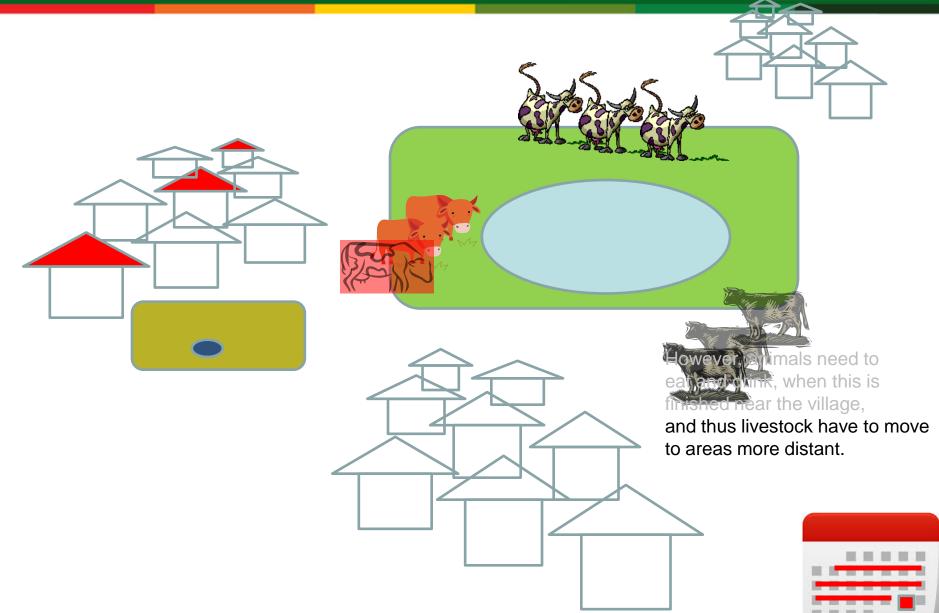

There is a village in rural area, where for some reason FMD virus is introduced. Clinical signs are not yet apparent and animals happily graze and drink together, until that day that a cow falls sick.

Through many possible routes, FMD virus may spread to other livestock as all live very close with each other.

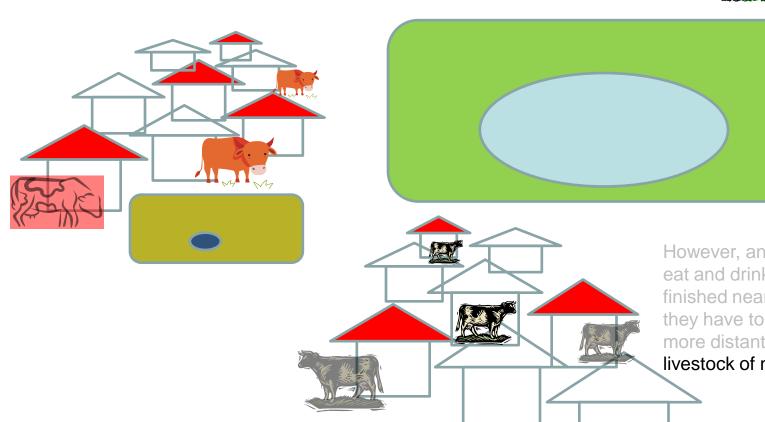

There is a village in rural area, where for some reason FMD virus is introduced. Clinical signs are not yet apparent and animals happily graze and drink together, until that day that a cow falls sick. Through many possible routes, FMD virus may spread to other livestock as all live very close with each other. Thus FMD affects more and more animals ...







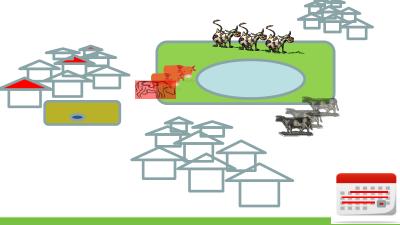
It happens so that the water source for this village becomes depleted ...



However, animals need to eat and drink, when this is finished near the village, they have to more to areas more distant, risking to infect livestock of nearby villages.

How to investigate this outbreak?
What information can be gained from

What information can be gained from this outbreak?



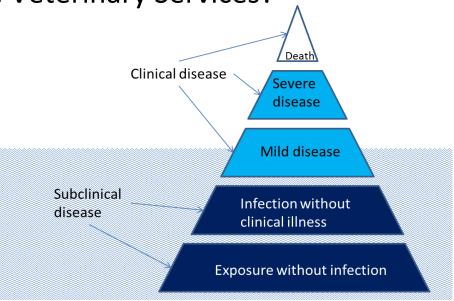
If one affected animal = one Case, how is one outbreak defined?

- A small holding with one or more affected animal(s)
- A village with one or more affected smallholdings/ animals

All villages with affected animals, that share the same water source

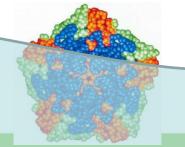
An outbreak refers to an epi-unit with clinical FMD

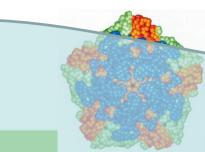
- Epi-unit: means a group of <u>animals</u> with a defined epidemiological relationship that share approximately the same likelihood of exposure to a pathogen
- In addition, one may consider administrative aspects eg. borders
- Focus for this webinar is on 'village' as in the above animation or 'farm' as in commercial farm
- How to register outbreak in an adjacent village?
 - Register as a new separate outbreak. For analysis of outbreak data, one may define that there needs to be a minimum of 30 days between notifications if reports from same or nearby epi-unit



Question

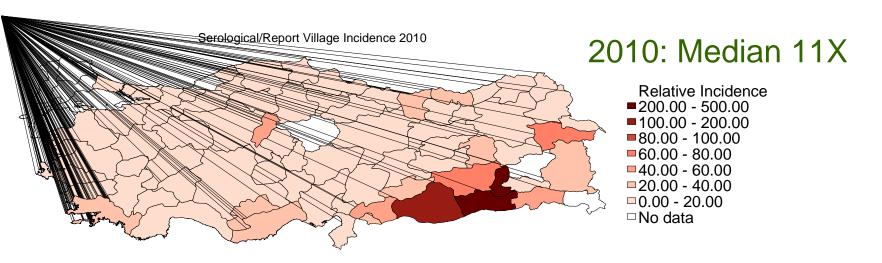
 What percentage of occurrence of FMD in livestock do you think is reported to the Veterinary Services?


- 1. Between 1 5 per cent
- 2. Between 6 and 10 per cent
- 3. Between 11 and 20 per cent
- 4. Between 21 and 40 per cent
- 5. More than 40 per cent

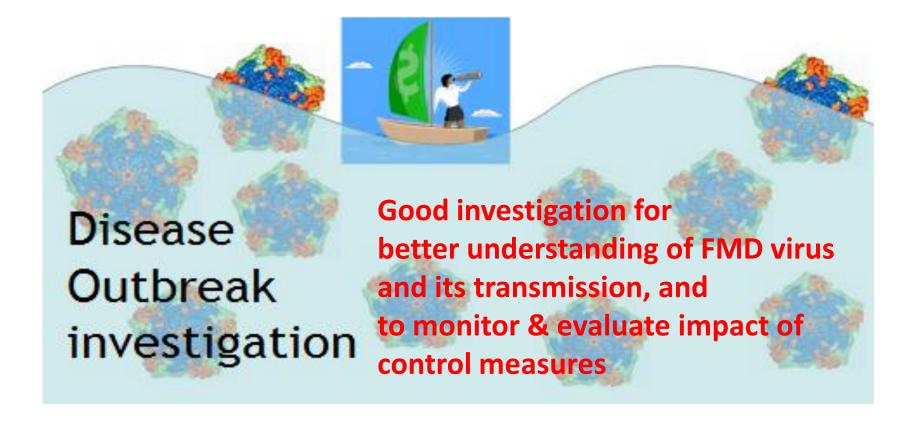


Feedback

- What percentage of clinical occurrence of FMD in livestock do you think is reported?
 - Estimated for West Azarbaijan Iran: 20 % (18% of villages with serological evidence of recent infection had notified FMD in last 12 months)
 - 2. Example Egypt 2011: $\pm 1\%$, an estimated 80% of villages had evidence of recent infection whereas no more than 25 outbreaks (out of 3000 villages) had been reported
 - 3. Turkey: 10% next slide



Relative comparison


(serological ÷ report incidence)

Why investigate an outbreak?

Contents of presentation

- What more steps than 'take a sample and run'?
- How to perform these steps?
- Considerations
- Relation between outbreak investigation and PCP-FMD stages 1-3
- Final remarks

Question

- What information <u>is currently collected</u> in your countries when an FMD outbreak is investigated? (please check appropriate boxes, more than one option may be checked)
 - 1. FMD virus for serotype and strain identification
 - 2. Economic impact of clinical FMD
 - 3. Extent of infection in outbreak area
 - 4. Vaccine effectiveness
 - Knowledge, attitude and practices of livestock owners about FMD control
 - 6. Possible source of FMD virus origin and routes by which FMD infection is spread
 - Risk factors for clinical FMD

Relation outbreak investigation and progress in PCP-FMD

	Stage 1 FOCUS Getting an understanding about FMD virus transmission and impact	Stage 2 FOCUS Implementation risk-based control to reduce impact of clinical FMD	Stage 3, 4 & 5 FOCUS Implementation control targeted at eliminating FMD virus circulation
Different objectives	Gaining a general understanding	Gaining a <u>progressively better</u> <u>understanding</u> and <u>monitoring</u> <u>& evaluation of impact</u> of control measures	Rapid detection and response for each and every outbreak

Is it really FMD?

Sampling for confirmation + getting to know the virus

Approach:

- Clinical investigation at holding(s) that reporting FMD
 - Record findings clinical signs (temp, lesions, morbidity, mortality, other)
 - Sufficient numbers 3-5 animals per species per holding
 - Target sick animals...but include healthy looking animals (you might find ones that have recovered)
- Sampling to confirm diagnosis
 - Focus on antigen vesicle, epithelium, serum, saliva, probang
 - Thus look for most recent cases
 - Sufficient samples different species minimum of 3-5 animals
- What sample to take?
 - Relation lesion ageing and available diagnostic tests

FMD – clinical signs and samples to take

Signs	2 days before	Day	0	Day 1	Day 2	Days 3-4	Days 5-7	Days 8-11	More than 11 davs	What can you do?	
General health				李小 李小						Take good care, keep inside but with fresh air	
Temperature										Plenty of water and soft feed	
Salivation								>		Clean mouth, give water and soft feed 6 times a day	
Lameness				I .						Clean, dry and disinfect claws every day and keep underground dry	
Vesicles			/		125	1555 E EN	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
vesicies			U		ly ruptured vesicle, sh , no fibrin, raw epithel	Considerable amounts of fibri deposition. Regrowth of epithelium begins	n iosition of fibrin and of epithelium contir		issue formation. on may still be present		
Virus present							*	*	**	Sample vesicular fluid, epithelium, saliva, probang or blood (purple cap)	
Antibodies present						Y				Sample sera = red cap blood tube	

Monitoring of sample submission

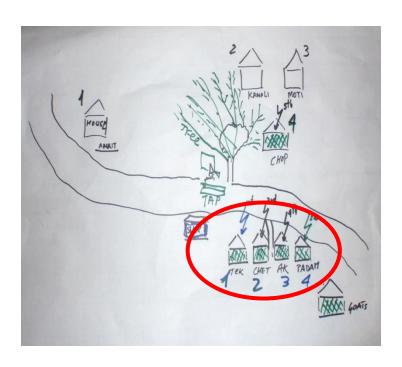
Virus identification for:

- Vaccine matching
- Monitoring strains and virus evolution
- Detection new serotype incursion

Performance indicator

- Samples originating from different
 - Areas/location
 - Species
 - Production systems
- No virus detected, negative or other?
 Is there a relation with:
 - Areas/ locations
 - Species

Need for additional training or support in certain areas for sampling and submission of samples

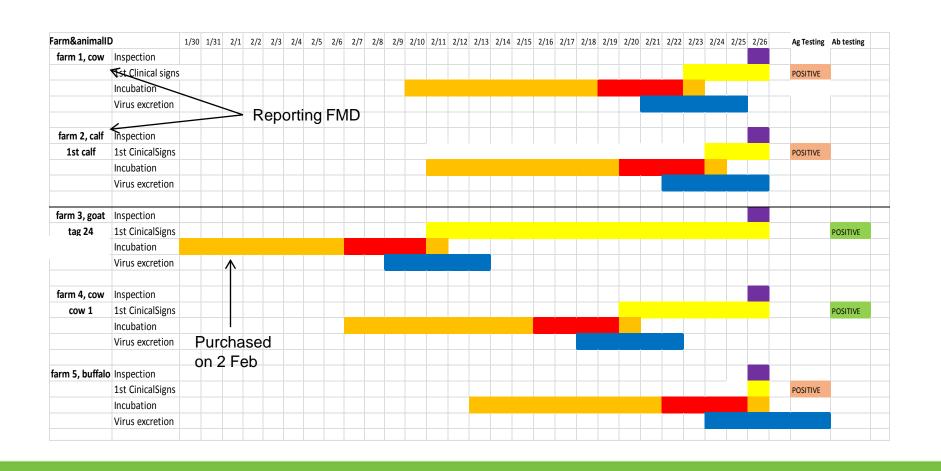


Where from and where to?

Understanding its origin and possibly onwards spread at epi-unit level

- Collect information on outbreak
 - Making sure that sufficient holdings of the epi-unit are covered to get full picture
 - Mapping the outbreak in the epi-unit
 - participatory approach
- Time line
 - Oldest lesions → needs active surveillance
 - Incubation time
- Prioritisation of contacts
 - 'Hubs'
 - Pigs cattle sheep
 - Animal people fomites local

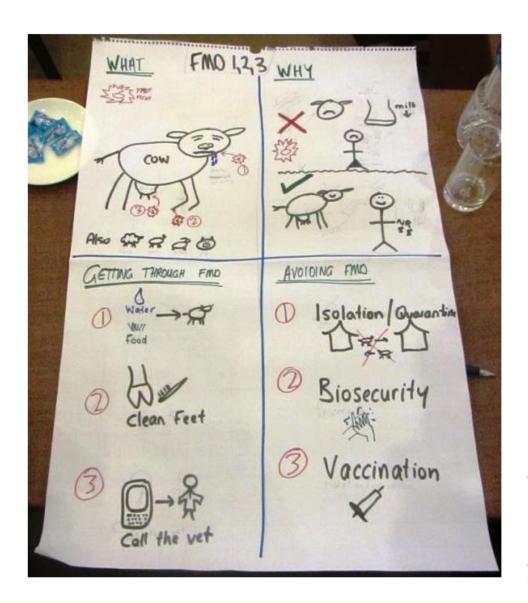
Constructing a time line: Oldest lesions – incubation period


1	Date FMD lesions examined	Example: 31 Aug		
2	Estimated age of oldest lesion on premises	2		
3	Estimated date of appearance of first lesions (subtract 2 from 1)	29 Aug		
4	4 Range of potential infection dates: 1 to 14 days prior to first lesions (3)			
5	Most likely infection dates for prioritising tracing: 2 to 5 days prior to first lesions (3)	24 – 27 Aug		
6	Forward tracing: range of potential onward spread: 1-2 days prior to first lesion (3) to cull	28 – 31 Aug		

Date	12/8	13/8	14/8	15/8	16/8	17/8	18/8	19/8	20/8	21/8	8/27	8/87	24/8	8/57	8/97	8/12	28/8	8/67	8/08	31/8
Lesions examined																				1
First clinical signs																		3		
Possible/likel y infection period				4	4	4	4	4	4	4	4	4	5	5	5	5	4			
Virus excretion																	6	6	6	6

Use of time-line

Local response to outbreak


What can farmer and local vet do about it?

- Communication with local community empower local control against disease
 - Raise awareness about FMD on what can be done
 - to prevent disease entering holding
 - to care for diseased animals
 - Focus on "Keeping livestock healthy"
 - Mobilisation to mitigate impact FMD
 - Understanding the stakeholders

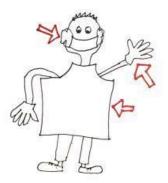
Keeping your livestock healthy

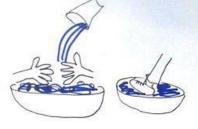
There are some small steps you can take to keep your animals healthy and free of disease.

Keep livestock healthy

- 1. When introducing livestock, inspect it to make sure it is healthy and keep it separate for 5 days
- 2. Vaccinate your livestock
- 3. Wash your hands and feet after handling livestock
- 4. Ensure any visitors use good biosecurity
- 5. If your animal becomes sick separate it, provide treatment and care, including water and feed.

Contact your local DLSO Veterinarian or technician for further advice





PARK BIKE AWAY FROM ANIMALS

WEAR GLOVES, MASK, APRON

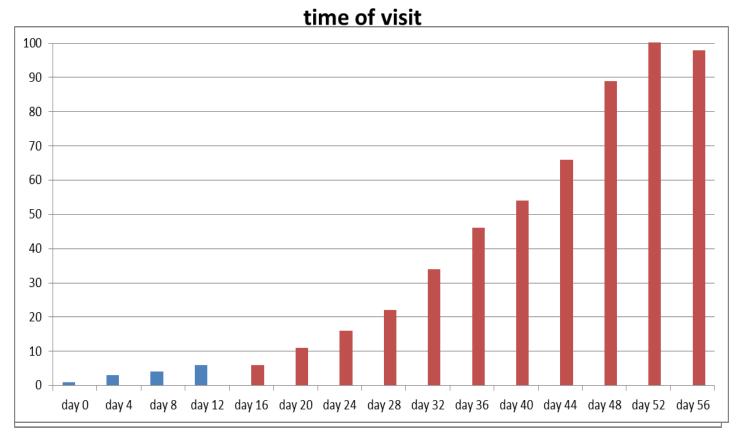
DEPARTURE

WASH HANDS WASH BOOTS

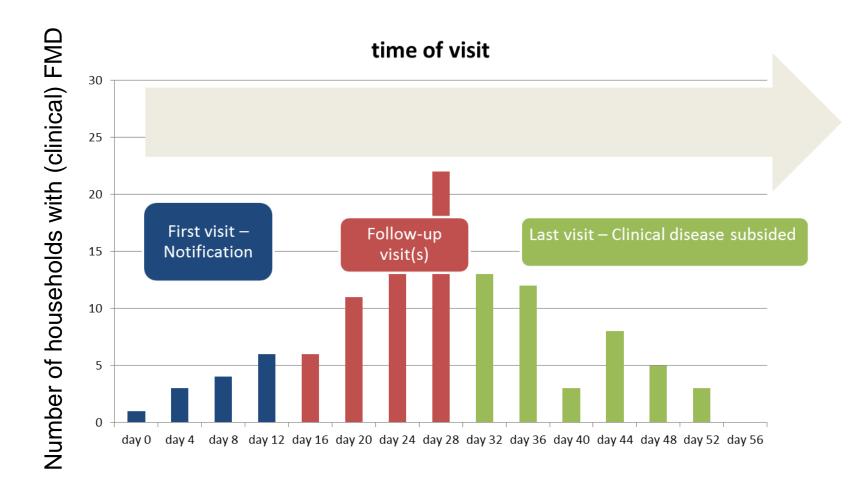
EMPOWER OTHERS WITH KNOWLEDGE

BIOSECURITY FOR TECHNICIANS
BIKE STICKERS

Question


- How do you communicate to livestock owners about FMD in your country? (choose one or more)
 - 1. through farmer associations
 - 2. through local vets and community animal health workers
 - 3. through the media (TV/radio)
 - 4. through religious organizations
 - 5. through the village leader
 - 6. through brochures/pamphlets
 - 7. other.....

This first visit: where in the outbreak?

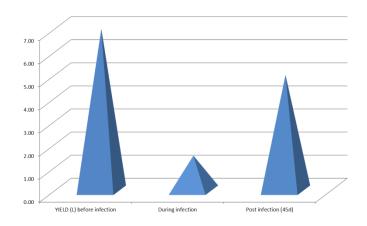


Follow up visits required!

What is the effect of clinical FMD?

Assessing the disease impact

Accurate data on


- Morbidity
- Mortality
- Milk loss
- Involuntary culling
- Treatment costs
- Long-term effects of FMD

Through selection of 5-10 livestock owners to keep records on animal health and disease, standard questionnaires or participatory through discussion groups, key informants using proportional piling etc.

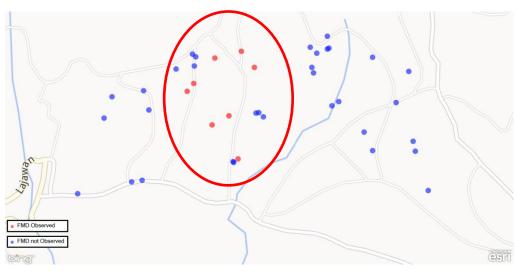
How much money is lost due to clinical FMD?

Impact on Milk Production

- 60-80% milk drop during FMD (2-3 weeks)
- 10-20% after clinical FMD for extended period of time
- Probability of mortality (1 10%)
- Treatment costs
- → Overall, for 1-year period: 15-20% income loss

Assessing the economic impact

Impact on Milk Production


- What quantity of milk was produced on the farm or from the herd before, during and after the infection? (Use a twomonth period.)
- At what quantity has it stabilised?
- What treatments have you used at what have they cost (e.g., for mastitis)?
- Have you had any mortalities or abortions in your herd?

Why do some households get clinical FMD and others not?

Risk factors for FMD spread within epi-unit

Transect

- Visit 20-50 households in an FMD outbreak area
- At time no new cases/households are reported (end of outbreak)
- Assign FMD status to each household (case or non-case)
- Data collected on potential risk factors of FMD at the household level
- Data usually collected with smartphones and the EpiCollect application
- Tapping local knowledge

Some examples of questions

Risk Factors

- What is your herdsize (# cattle/buffalos)
- Do you also have small ruminants
- Have you vaccinated for FMD in the last 6-12 months? (May be a question for the district vet.)
- In the last two months, have you:
 - used a water source for your animals that is also used by other farmers?
 - moved animals off your property?
 - grazed or fed your animals where other animals have grazed or fed (troughs)?
 - brought feed onto your property?
 - introduced new animals onto your property?

Variable	Odds ratio	95% CI	P-value
Mix with other livestock	5.0	1.6-16.0	0.012
Small ruminants present in same household	2.8	1.0-8.0	0.045
Additional cow owned (herd size)	1.1	1.0-1.2	0.045

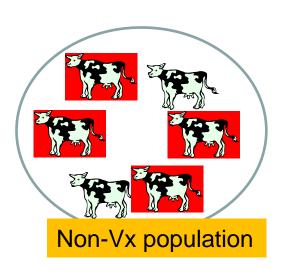
Combined Results from Nakuru region, Kenya courtesy of Nick Lyons

To what extent has the infection spread subclinically?

Gaining a deeper understanding

- Spread of infection NSP sero-survey in young animals (6-12 months of age)
 - Disease in large ruminants but what is the role of small ruminants?
 - Sample sufficient animals with respect of
 - Species
 - Production systems
 - Location within epi-unit
- Neighbouring epi-units may be included
 Discrepancy between reporting and extent
 of FMD virus spread

Question?


How well is vaccination performing?

Gaining a deeper understanding

- Vaccination effectiveness
 - Level of protection after vaccination

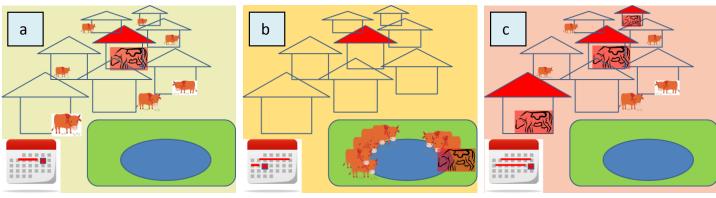
VE = incidence of disease in Vx incidence of disease in non Vx

New	FMD affected groups only			
Asia-1 vaccin e	Tota I	FMD cases	Relative risk	Vaccine effectiven ess [95%CI]
No	122	66 (54%)	-	
Yes	23	4	RR=0.32	68%
162		(17%)	[0.15-0.67]	[33%-85%]

Outbreak after vaccination?

How can outbreak investigation improve vaccination programs?

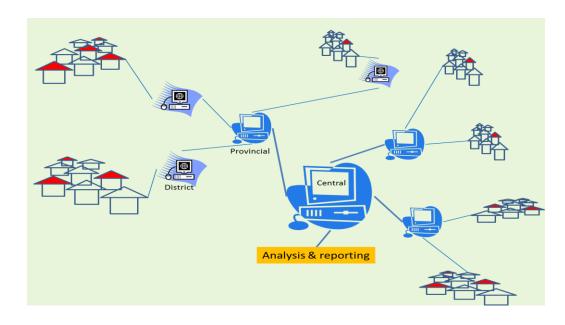
- Sampling: ensure matching between vaccine and field strain
- Educating livestock owners on vaccination
 - Reluctance to vaccinate (pregnant) animals
- Measure vaccination effectiveness
- Improve vaccination coverage
- Measure duration of protection after vaccination
- Application biosecurity measures by vaccinators



Dimensions:

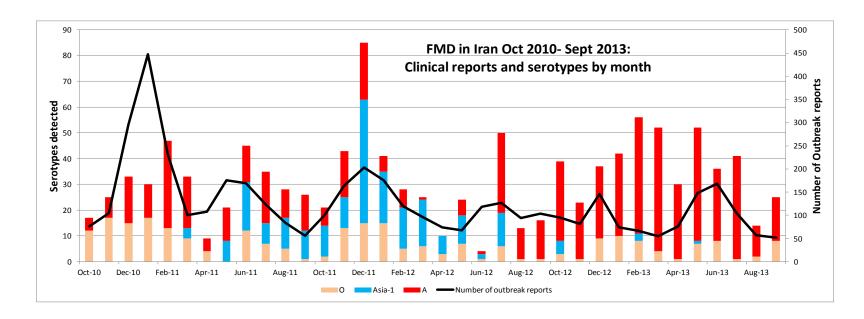
Time: when are you investigating?

Space: where in outbreak are you investigating?



Supervision by central level

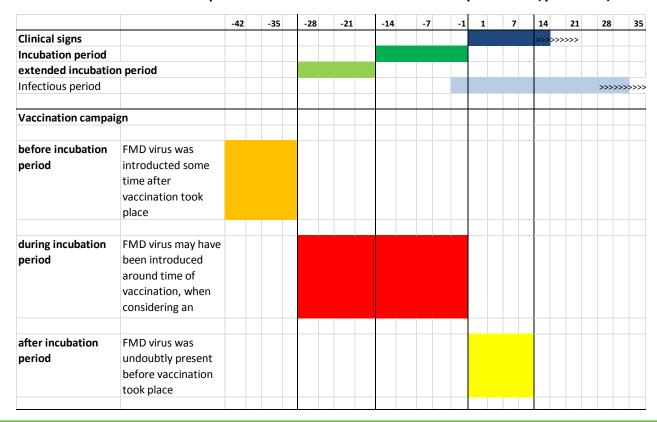
- Need for accurate, complete, uniform, timely data
- Develop and test SOPs
- Raw data available at central level
 - capacity to aggregate,
 analyse and report
- Frequent reporting

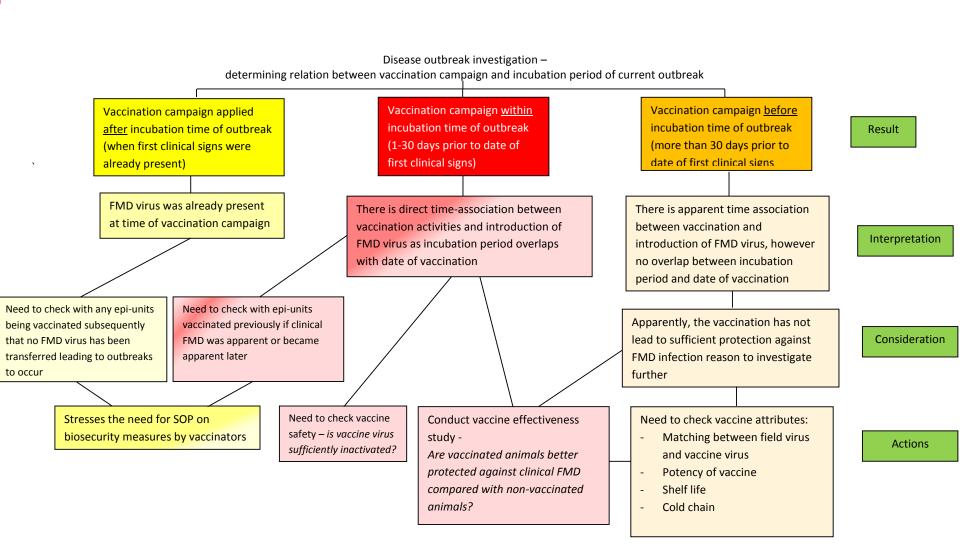


Reporting by central level

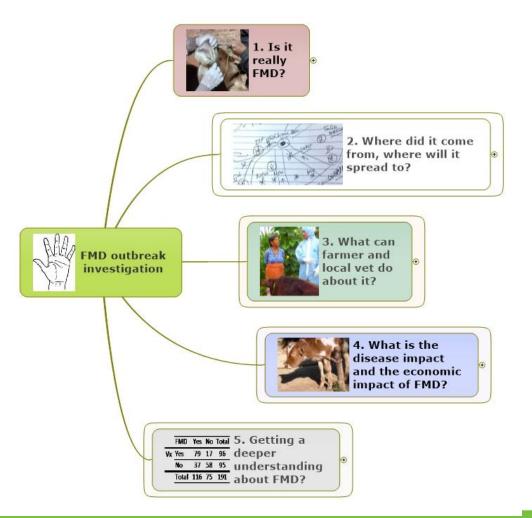
- Monthly reporting on
 - # outbreaks, by species, production system
 - Serotypes identified
 - Geographical mapping of outbreak locations

	Confirm FMD	Understanding	Local response to an	Assessing impact	Getting a deeper
	suspicion	introduction and	outbreak		understanding
		spread			
Method	FRESH lesions	OLDEST lesions	-Inform livestock	- 5 – 10 livestock	-Transect study (20-
and			owners about FMD	owners, keep	50 households)
number of	-Clinical	-10 or more	-Train on biosecurity	records	-Sero-survey (50
samples	examination 3-5 animals per species -Sampling of 3-5 clinically-affected animals	livestock owners and constructing time lines including contacts during incubation period	-Train on taking care of sick animals -Use participative methods as there will be farmers who are aware of the above issues	-Participatory methods may be used	animals per species) in young stock 6 and 12 months -Vaccine effectiveness study (minimally 50 records per group)
Time needed	0.5 day	1-2 days including reporting	2-5 days, across multiple visits	3-5 days across multiple days	1 day for transectstudy2-5 days for NSPsurvey2-5 days for vaccineeffectiveness
Frequency	Every newly reported outbreak (epi-unit) with > 30 days		Once every six month for every region		
in stage 1 and 2	between adjacent outbreaks		(considering different production systems)		


	Stage 1 FOCUS	Stage 2 FOCUS	Stage 3, 4 & 5 FOCUS
	Getting an understanding	Implementation risk-based	Implementation control
	about FMD virus	control to reduce impact	targeted at eliminating
	transmission and impact	of clinical FMD	FMD virus circulation
Sampling for confirmation	Relevant	Relevant	Relevant
Identification of routes of introduction and spread	Gaining a general understanding about routes of introduction and spread	Gaining a progressively better understanding about routes of introduction and spread	Detection of source, and follow-up of onwards routes of spread
Raising awareness and local response	Awareness raising to support local response	Awareness raising to support local response	Response under responsibility of competent authority
Assessing disease and economic impact of FMD	Getting a general understanding of morbidity, mortality, treatment costs	Getting a <u>progressively</u> <u>better understanding of</u> morbidity, mortality, treatment costs	Every outbreak to be fully documented
Getting a deeper understanding – testing assumptions	Optional	Getting a progressively better understanding about risk factors, vaccine effectiveness and infection spread – means of M&E	Every outbreak requires full investigation into risks, spread and vaccination effectiveness


FMD Outbreak and vaccination

- Vaccination took place prior to the incubation period (orange)
- Vaccination took place during the incubation period (red)
- Vaccination took place after the incubation period (yellow)



Disease Outbreak Investigation (DOI): more than "take a sample and run"!

The opportunity to get more information

It requires:

- sufficient numbers investigated
- lead by example biosecurity
- raise awareness with farmers
- define, train and follow up on Standard
 Operating Procedures

Acknowledgements

Much of the material, figures and photos was contributed by:

Fabrizio Rosso, Jenny Maud, Melissa McLaws – EuFMD

Giancarlo Ferrari – FAO

Greg Torres – OIE

Nick Lyons – LSHTM, UK

Theodore Knight-Jones – WRL Pirbright, UK

Staff from GOVS-Egypt, DAH/DLS Nepal, DVS Kenya, IVO-Iran, GDFC-Turkey

Any questions?

Thank you for your attention!

